Department of Physics
 University College of Science
 Quiz-1

1) Which of the following is not an equation of plane progressive wave
a) $\Psi(x, t)=a \sin 2 \pi / T(t-x / v)$
b) $\Psi(x, t)=a \sin (\omega t-k x)$
c) $\Psi(x, t)=a \sin 2 \pi(t / T-x / \lambda)$
d) $\Psi(x, t)=a \sin 2 \pi(t / T-\lambda / x)$
2) What is the relation between wavelength, time period and velocity?
a) $\lambda=\frac{T}{V}$
b) $\lambda=\frac{v}{T}$
c) $\lambda=T v / \mathrm{c}$
d) $\lambda=T v$
3) Sound travels faster is
a) Dry air
b) Moist air
c) In both
d) None of the above
4) According to Laplace's Correction, what happens to the velocity of sound if temperature of the medium increases.
a) Increases
b) Decreases
c) Remains same
d) Independent of temperature
5) Which of the following is one-dimensional differential equation of the wave motion
a) $d \Psi / d t=v^{2} d \Psi / d x$
b) $\mathrm{d}^{2} \Psi / \mathrm{dx}^{2}=\mathrm{v}^{2} \mathrm{~d}^{2} \Psi / \mathrm{dt}^{2}$
c) $\mathbf{d}^{2} \Psi /{d t^{2=}} \mathbf{v}^{2} d^{2} \Psi / d \mathbf{x}^{2}$
d) $\mathrm{d}^{2} \Psi / \mathrm{dt}^{2=} \mathrm{v} \mathrm{d}^{2} \Psi / \mathrm{dx}^{2}$
6) Wave front is locus of all the point which are vibrating in \qquad
a) Same phase
b) Different phase
c) Phase of $\mathrm{pi} / 2$
d) Phase of pi
7) What should be distance between the source and the split in Fraunhofer diffraction
a) 10 cm
b) Infinity
c) Zero
d) 20 cm
8) Bending of light around on obstacle is called \qquad
a) Diffraction
b) Interference.
c) Reflection
d) Polarization
9) The grating constant value for 15000 lines per inch \qquad
a) $1.69 \times 10^{-6} \mathrm{~m}^{-1}$
b) $1.59 \mathrm{X} \mathrm{X10}^{-6} \mathrm{~km}^{1}$
c) $2.69 \mathrm{X10}^{-6} \mathrm{~m}^{-1}$
d) 1.19 m
10) In Fraunhofer diffraction at a single slit the centre of the diffraction pattern is always
a) Bright.
b) Dark.
c) Both
d) None of the above
11) Colour of thin film due to
a) Interference
b) Diffraction
c) Polarization
d) Photo electric effect
12) Condition for constructive interference
a) Path difference $=$ nlambda
b) Phase difference $=2 n \pi$
c) Both a) and b) options
d) None of the above
13) Centre of the Interference pattern always bright because at the centre

Of the interference pattern
a) Path difference is zero
b) Path difference is (lambda /2)
c) Path difference is 180 m
d) None of the above
14) Coherent sources must emit two light waves of
a) Same phase
b) Constant phase difference
c) Both a) and b)
d) Same amplitude
15) Fresnel Biprism is used to calculate
a) Wave length of light
b) Phase of light
c) Amplitude of light
d) Velocity of light
16) Length of string lied between two rigid supports is 20 cm . maximum wavelength of stationary wave produced is
a) 10 cm
b) 20 cm
c) 40 cm
d) 80 cm
17) velocity of a transverse waves given by
a) $v^{2}=T / m$
b) $v^{2}=m / T$
c) $v^{2}=E / T$
d) $v^{2}=f / m$
18) When an open organ pipe is dipped in water up to half of its height then its frequency become
a) Half
b) Double
c) Remains same
d) For times
19) Maximum displacement of particles gives
a) Tension
b) Node
c) Antinode
d) Frequency
20) Distance between node and antinode in a stationary wave
a) $\lambda / 2$
b) λ
c) $\lambda / 4$
d) 2λ

